BREAKOUT - PRODUCTIVITY Argon ne °

AAAAAAAAAAAAAAAAAA

SPECIAL CONCERNS OF LARGE MULTIPHYSICS

HPC CODES

August 22, 2016
DOE-COE-PP
Denver, CO



PERFORMANCE PORTABILITY

In the past

* Programming to a common machine model
— Separation of concerns

» Obtain some fraction of achievable performance
through algorithmic and data structure choices

= Limited platform specific optimization
— The least productive part of software lifecycle

= Trade-offs between component performances

» Trade-offs between programmer productivity and
performance

Argonne &



WHAT CAN VENDORS DO

= Continue supporting the features of the language
— Not to pull the rug from under apps

= [f there is a good reason, document

* Enable ways of writing codes that avoid optimization
blockers

— Constructs that can be used to express operations without
going into details
= Science libraries
— How to write some of them, e.g. sparse solvers

» Perhaps use some resources for buffering next stage data
— Similar to overlap between computation and
communication in MPI

3 Argonne &



REFACTORING CHALLENGES

= Selection of abstractions
— At what level ?

* Machine model
— Not specific platforms

= Cost estimation and resource allocation
= Transition plan
= Coexistence of development and production

4 Argonne &




DATA POINTS WITH ABSTRACTIONS USE

* Good results with RAJA
— Incremental changes to code
— On ramp built in
— Easy to maintain production during transition

* Figuring out how to make changes occur
Incrementally can be a challenge
— But needs to happen

* May need more than one iteration
— Generating a mini-app at first can be useful

5 Argonne &



TESTING AND VERIFICATION

= Integral and critical part of code modification
— Especially refactoring

» Designing tests — a critical but underappreciated activity
— As demanding as experiment design
= Bitwise reproducibility impossible
— Differentiating between perturbations due to machine
precision from a bug
» Retroactively putting in tests in legacy codes
— Intertwined dependencies

= Coverage — not just lines of code covered, but also
iInteroperability

6 Argonne &



SOME USEFUL TESTING IDEAS
Ideally building confidence through a pyramid

= Unit tests at the bottom

= Higher granularity tests above

= |ntegration tests

= System level tests

= Different permutations of capabilities

» Diagnostics — an alternative way of gaining confidence
= Inject bugs into the code to make sure tests work

» Use a matrix to put together tests in a test suite
= Test on multiple platforms

Argonne &



PERFORMANCE TESTING

» Check for performance variation in addition to correctness
testing

= Easy to check catastrophic ones, much harder to catch
gradual degradation

= Blue gene was much easier than x86

8 Argonne &




PRODUCTIVITY AWARENESS

* More mature in UK with RSE
* No equivalent in the US yet, but culture is changing
— Projects such as ECP are helping propagate it

= Maturing as a community

» Equipment design recognized as a critical scientific
contribution in its own right
— Software plays the same role

9 Argonne &




